5.2 Trigonometric Functions of Real Numbers

(You might find it helpful to review your general knowledge of functions 2.1-2.6_

Definition of the Trigonometric Functions

Let t be any real number and let P(x,y) be the terminal point on the unit circle determined by t. We define

$$\sin t = y$$
 $\cos t = x$ $\tan t = \frac{y}{x} \quad (x \neq 0)$

$$\csc t = rac{1}{y} \quad (y
eq 0) \qquad \quad \sec t = rac{1}{x} \quad (x
eq 0) \qquad \quad \cot t = rac{x}{y} \quad (y
eq 0)$$

Notation: can be written $\sin t$ or $\sin(t)$

Examples Quadrant 1

$$\sin(\pi/6) = \underline{\qquad} \qquad \csc(\pi/6) = \underline{\qquad}$$

$$t = \pi / 6 \qquad \qquad \cos(\pi / 6) = \underline{\qquad} \qquad \sec(\pi / 6) = \underline{\qquad}$$

$$\tan(\pi/6) = \underline{\qquad} \cot(\pi/6) = \underline{\qquad}$$

$$\sin(\pi/4) = \underline{\qquad} \qquad \csc(\pi/4) = \underline{\qquad}$$

$$t = \pi / 4$$
 $\cos(\pi / 4) =$ $\sec(\pi / 4) =$

$$\tan(\pi/4) = \underline{\hspace{1cm}} \cot(\pi/4) = \underline{\hspace{1cm}}$$

$$\sin(\pi/3) = \underline{\qquad} \qquad \csc(\pi/3) = \underline{\qquad}$$

$$t = \pi / 3$$
 $\cos(\pi / 3) = \underline{\qquad}$ $\sec(\pi / 3) = \underline{\qquad}$

$$\tan(\pi/3) = \underline{\hspace{1cm}} \cot(\pi/3) = \underline{\hspace{1cm}}$$

Reciprocal Identities

$$\sec(\pi/3) = \underline{\qquad} \quad \csc(\pi/4) = \underline{\qquad} \quad \cot(\pi/6) = \underline{\qquad}$$

Examples Quadrantal Numbers (Angles)

$$\sin(0) = \underline{\qquad} \qquad \csc(0) = \underline{\qquad}$$

$$\cos(0) = \underline{\hspace{1cm}} \sec(0) = \underline{\hspace{1cm}}$$

$$tan(0) = \underline{\hspace{1cm}} cot(0) = \underline{\hspace{1cm}}$$

$$\sin(\pi/2) = \underline{\qquad} \qquad \csc(\pi/2) = \underline{\qquad}$$

$$\cos(\pi/2) = \underline{\qquad} \qquad \sec(\pi/2) = \underline{\qquad}$$

$$\tan(\pi/2) = \underline{\hspace{1cm}} \cot(\pi/2) = \underline{\hspace{1cm}}$$

$$\sin(\pi) = \underline{\qquad} \qquad \csc(\pi) = \underline{\qquad}$$

$$\cos(\pi) = \underline{\hspace{1cm}} \sec(\pi) = \underline{\hspace{1cm}}$$

$$\tan(\pi) = \underline{\hspace{1cm}} \cot(\pi) = \underline{\hspace{1cm}}$$

$$\sin(3\pi/2) = \underline{\qquad} \cos(3\pi/2) = \underline{\qquad}$$

$$\cos(3\pi/2) =$$
______ $\sec(3\pi/2) =$ _____

$$\tan(3\pi/2) = \underline{\qquad} \cot(3\pi/2) = \underline{\qquad}$$

Domain of Trigonometric Functions

Examples: Evaluating Trig Functions in Other Quadrants

$$\sin(\pi/3) =$$

$$\sin(\pi/3) = \underline{\hspace{1cm}} \sin(2\pi/3) = \underline{\hspace{1cm}}$$

$$\sin(4\pi/3) =$$

$$\sin(4\pi/3) = \underline{\hspace{1cm}} \sin(5\pi/3) = \underline{\hspace{1cm}}$$

Notice:

$$\cos(\pi/6) =$$

$$\cos(\pi / 6) = \underline{\qquad} \cos(5\pi / 6) = \underline{\qquad}$$

$$\cos(7\pi/6) =$$

$$\cos(7\pi/6) = \underline{\qquad} \cos(11\pi/6) = \underline{\qquad}$$

$$\tan(\pi/4) = \underline{\hspace{1cm}} \tan(3\pi/4) = \underline{\hspace{1cm}}$$

$$\tan(3\pi/4) = \underline{\hspace{1cm}}$$

$$\tan(5\pi/4) = \underline{\hspace{1cm}}$$

$$\tan(5\pi/4) = \underline{\hspace{1cm}} \tan(7\pi/4) = \underline{\hspace{1cm}}$$

So Trig Functions having the same reference number (angle) have the same absolute value, but may differ in sign depending on the quadrant.

Signs:

Example: Quadrant of a Terminal Point

In what quadrant is $\sin t < 0$ and $\sec t > 0$

Examples: Evaluating Trig Functions Using only Reference Numbers and Quadrant Signs

$$\cos(11\pi/6) = \sin(4\pi/3) =$$

$$\sin(4\pi/3) =$$

$$\tan(5\pi/6) =$$

$$\tan(5\pi/6) = \underline{\qquad} \sec(5\pi/4) = \underline{\qquad}$$

$$\csc(5\pi/3) = \underline{\hspace{1cm}}$$

$$csc(5\pi/3) =$$
_____ $cot(7\pi/4) =$ _____

Examples: Relationship Between Trig Functions at t and at -t

$$\cos(\pi/4) =$$

$$\cos(\pi/4) = \underline{\hspace{1cm}} \cos(-\pi/4) = \underline{\hspace{1cm}}$$

$$\sin(\pi/6) =$$

$$\sin(\pi/6) = \underline{\qquad} \sin(-\pi/6) = \underline{\qquad}$$

$$\tan(\pi/3) = \underline{\hspace{1cm}}$$

$$\tan(\pi/3) = \underline{\hspace{1cm}} \tan(-\pi/3) = \underline{\hspace{1cm}}$$

Even Odd Properties of Trigonometric Functions

Recall: Even Function

Odd Function

$$\sin(-t) =$$

$$\cos(-t) =$$

$$\sin(-t) = \underline{\qquad} \cos(-t) = \underline{\qquad} \tan(-t) = \underline{\qquad}$$

Example: Using Even/Odd Properties

$$\cos(-2\pi/3) =$$

$$\sin(-7\pi/4) =$$

$$\cos(-2\pi/3) = \underline{\hspace{1cm}} \sin(-7\pi/4) = \underline{\hspace{1cm}} \tan(-\pi/6) = \underline{\hspace{1cm}}$$

Estimating Trig Values With a Calculator -

$$\cos(\pi/8) =$$

$$\cos(\pi/8) = \underline{\hspace{1cm}} \sin(-5\pi/12) = \underline{\hspace{1cm}} \tan(3) = \underline{\hspace{1cm}}$$

$$tan(3) =$$

$$sec(4) = \underline{\hspace{1cm}} cot(100) = \underline{\hspace{1cm}} csc(1.3) = \underline{\hspace{1cm}}$$

$$\cot(100) =$$

$$\csc(1.3) = \underline{\hspace{1cm}}$$

Very IMPORTANT: _____

Pythagorean Identities

Example: We use the notation $\cos^2(t)$ to mean Compute

$$\cos^2(\pi/3) + \sin^2(\pi/3)$$

Pythagorean Identities

$$\cos^{2}(t) + \sin^{2}(t) = \underline{\qquad} \qquad \cos^{2}(\pi/3) + \sin^{2}(\pi/3)$$

$$\cos^2(\pi/3) + \sin^2(\pi/3)$$

$$\cos^2(\pi/3) + \sin^2(\pi/3)$$

Example: Finding All Trig Values Given the Value of One of Them

Given that $cos(t) = -\frac{3}{5}$ and t is in Quadrant III, find the values of the other 5 trig functions as t

Example: Writing One Trig Function in Terms of Another

Write tan(t) in terms of sin(t) for t in Quadrant III

Applications

Explore using Desmos